
A whitepaper on React Native

Rajan Twanabashu

A Whitepaper on React Native

Page 2 of 16

Copyright	Information	

Page 3 of 16

Table	of	Content	

	
1. Introduction	to	React	Native.	
2. What’s	wrong	with	traditional	approach	of	mobile	application	
development?	

3. What	React	Native	has	to	offer?	
4. Application	build	with	React	Native.	
5. Negative	Side	of	React	Native.	
6. Conclusion.	

	
	
	
	
	
	
	
	
	
	
	
	
	

A Whitepaper on React
Native

Version 1.0

Revision date June 7, 2016

Revised by Rajan Twanabashu

Page 4 of 16

1 Introduction	to	React	Native	
	

React	Native	is	the	next	generation	of	React	-	a	JavaScript	code	library	
developed	by	Facebook	and	Instagram,	which	was	released	on	Github	in	2013.		
React	Native	let	you	build	native	iOS	and	Android	application	by	using	
JavaScript.		So	react	native	utilize	both	the	advantages	of	Native	app	and	
Hybrid	app	functionality.		

React	Native	helps	developers	reuse	code	across	the	web	and	on	
mobile.	Engineers	won't	have	to	build	the	same	app	for	iOS	and	for	Android	
from	scratch	-	reusing	the	code	across	each	operating	system.		Thus	the	focus	
of	React	Native	is	on	developer	efficiency	across	all	the	platform.		They	even	
uses	the	phrase	‘Learn	Once,	write	any	where’,	which	is	absolutely	true.		
	

More	information	on	react	native	can	be	found	at:		
https://facebook.github.io/react-native/	

	

A Whitepaper on React
Native

Version 1.0

Revision date June 7, 2016

Revised by Rajan Twanabashu

Page 5 of 16

2 What’s	wrong	with	traditional	approach	of	mobile	application	
development	

	
1.	No	portability		

Since	each	native	application	only	runs	on	one	platform,	businesses	building	
native	apps	must	make	a	choice–build	for	one	platform	or	build	for	multiple	
platforms?	Unfortunately,	there’s	no	easy	answer.	Support	of	all	the	platform	
requires	significant	amount	of	time	and	resource.		

	

2.	Platform	instability		

The	mobile	platform	is	notoriously	unstable.	A	popular	platform	today	may	
disappear	in	just	a	few	years.	For	example,	both	Blackberry	and	Palm	
dominated	the	mobile	industry	just	5	short	years	ago.	Today,	Blackberry	is	
struggling	and	Palm	doesn’t	exist.	The	fact	is,	nobody	knows	what	the	mobile	
platform	landscape	will	look	like	in	another	5	years.	Companies	that	choose	
the	native	approach	always	run	the	risk	of	wasting	time	and	money	building	
for	a	platform	that	might	not	last.		

	

3.	Development	cost		

While	native	app	development	cost	varies	depending	on	the	app’s	complexity,	
it’s	easily	the	most	expensive	and	time-consuming	approach.	For	example,	
Forrester	Research	estimates	that	most	native	apps	require	at	least	6	months	
of	full-time	work,	and	cost	between	$20,000	and	$150,000,	depending	on	
complexity.		

It’s	important	to	note	that	those	estimates	apply	to	single-platform	native	app	

A Whitepaper on React
Native

Version 1.0

Revision date June 7, 2016

Revised by Rajan Twanabashu

Page 6 of 16

development.	The	cost	rises	exponentially	when	developing	cross-platform	
native	applications,	as	every	platform	requires	a	separate	application	built	
with	a	different	programming	language.		

	

4.	Development	time		

As	mentioned	above,	Forrester	Research	estimates	that	a	single	native	app	
requires	6	months	of	development	time.	If	building	native	apps	for	more	than	
one	platform,	the	time	requirements	raise	depending	on	the	number	of	
developers	needed	and	application	complexity.	For	example,	using	just	one	
developer	for	cross-platform	smartphone	app	development	brings	the	
development	time	up	to	2	years	(4	apps	x	6	months	each).	However,	
development	time	estimates	become	increasingly	complex	when	using	
multiple	developers.	For	instance,	if	a	business	uses	four	different	developers	
for	cross-platform	smartphone	app	development,	they	will	receive	four	
different	app	designs.	As	any	project	manager	knows,	ensuring	that	multiple	
apps	created	by	multiple	developers	look	and	function	identically	is	a	very	
time-	consuming	task.		

	

5.	Maintenance	cost		

While	all	apps	require	regular	updates	and	maintenance,	native	apps	require	
the	most	future	maintenance	when	compared	with	the	other	two	mobile	app	
options.	Beyond	regular	app	maintenance,	native	apps	must	also	be	updated	
with	every	new	platform	release.	Additionally,	businesses	that	build	native	
apps	for	multiple	platforms	must	maintain	multiple	applications,	duplicating	
every	change	or	update	across	all	applications.	For	instance,	a	minor	change	to	
a	cross	platform	smartphone	and	tablet	application	requires	changes	to	eight	

A Whitepaper on React
Native

Version 1.0

Revision date June 7, 2016

Revised by Rajan Twanabashu

Page 7 of 16

separate	applications.		

	

6.	Limited	control		

When	placed	in	an	app	store,	a	native	application	is	completely	controlled	by	
the	app	store’s	owner	(like	Apple	or	Google).	For	instance,	if	Apple	rejects	or	
bans	a	company’s	app	from	their	app	store,	the	company	has	no	recourse.	If	
Apple	decides	an	app	doesn’t	meet	their	terms	of	service,	the	app	is	removed.	
If	another	company	claims	copyright	over	an	element	in	the	app,	the	app	is	
removed.	Or,	if	Apple	decides	the	app	isn’t	right	for	their	store,	the	app	is	
removed.	The	app	store	model	puts	companies	at	the	mercy	of	a	third	party.	
All	of	the	resources	put	into	their	application	are	wasted	if	that	app	store’s	
owner	decides	the	app	isn’t	right	for	their	store.		

	

	

7.	Learning	Curve		

For	developing	multi-platform	application,	once	should	go	through	the	very	
different	programming	language	specific	to	that	platform.	Apple	has	Objective	
C	(and	Swift)	to	develop	iOS	application.	Google	uses	Java	to	develop	android	
application	and	Microsoft	deploys	C#	or	Visual	Basic	for	their	Windows	
Phones.		

	

	

	

A Whitepaper on React
Native

Version 1.0

Revision date June 7, 2016

Revised by Rajan Twanabashu

Page 8 of 16

3 What	react	native	has	to	offer		
	
1.	Truly	Native	

Most	mobile	apps	built	with	JavaScript	use	Cordova	
(https://cordova.apache.org/),	or	a	framework	built	on	top	of	it,	such	as	the	
popular	Ionic	(http://ionicframework.com/)	or	Sencha	Touch	
(https://www.sencha.com/products/touch/).	With	Cordova,	you	have	the	
ability	to	make	calls	to	native	APIs,	but	the	bulk	of	your	app	will	be	HTML	and	
JavaScript	inside	a	Web	View.	While	you	can	approximate	native	components	
–	and	it	is	certainly	possible	to	build	a	great	UI	with	HTML	and	JS	,	but	none	of	
such	app	will	match	the	look	and	feel	of	a	real	native	app.	The	little	things	–	
like	scrolling	acceleration,	keyboard	behavior,	and	navigation	–	all	add	up	and	
can	create	frustrating	experiences	for	your	customers	when	they	don’t	behave	
as	expected.			
	

Although	you	still	write	JavaScript	with	React	Native,	the	components	you	
define	will	end	up	rendering	as	native	platform	widgets.	React	Native	
component	definitions	look	and	behave	pretty	much	just	like	react	for	web	
components,	but	target	native	UI	widgets	instead	of	HTML	(which	on	iOS	gets	
rendered	to	a	native	UIView,	and	on	android,	android.	View).	When	your	
components’	data	changes,	React	Native	will	calculate	what	in	your	view	
needs	to	be	altered,	and	make	the	needed	calls	to	whatever	native	UI	widgets	
are	displayed.		
	

So	react	native	application	have	“NO	HTML,	NO	Browser	and	No	Web	view”	
that	makes	it	more	responsive	giving	native	UI	and	user	experience.		

	

A Whitepaper on React
Native

Version 1.0

Revision date June 7, 2016

Revised by Rajan Twanabashu

Page 9 of 16

2.		Responsive		

	
Is	React	Native	really	fast	?	JavaScript	isn’t	as	fast	as	native	code	can	be,	but	
for	most	tasks,	JavaScript	and	React	Native	are	more	than	capable	of	keeping	
your	app	running	at	60	frames	per	second.	Under	the	hood,	your	JavaScript	
code	is	run	on	its	own	thread,	separate	from	the	main	UI	thread.	So	even	when	
your	app	is	running	complex	logic,	your	UI	can	still	be	smoothly	animating	or	
scrolling	at	60fps,	so	long	as	the	UI	isn’t	blocked	by	the	JS	thread.		

	

3.	Ease	of	Learning		

One	of	react’s	greatest	strengths	is	how	readable	it	is,	even	to	those	unfamiliar	
with	it.	Many	frameworks	require	that	you	learn	a	long	list	of	concepts	that	
are	only	useful	within	that	framework,	while	ignoring	language	fundamentals.	
React	does	its	absolute	best	to	do	the	opposite.		

	

	

	

5.	Vibrant	Ecosystem		

Since	the	majority	of	your	React	Native	code	is	just	plain	JavaScript,	it	reaps	
the	benefits	of	all	the	advancements	in	the	language	and	its	ecosystem.	For	e.g.	
React	Native	can	easily	integrate	with	other	power	JavaScript	library	available	
out	there.		

	

A Whitepaper on React
Native

Version 1.0

Revision date June 7, 2016

Revised by Rajan Twanabashu

Page 10 of 16

6.	One	Design	Tool		

React	Native’s	support	for	flexbox	means	you	can	use	the	exact	same	layout	
code	for	Android,	iOS	and	web,	instead	of	learning	three	different	engines.		

	

7.	Developer	Experience		

Happy	developers	are	productive	developers,	and	React	Native	has	a	great	
development	environment.	Instead	of	repeatedly	waiting	for	your	code	to	
compile	and	your	app	to	restart	while	making	tiny	edits,	changes	to	a	React	
Native	codebase	are	made	to	your	running	app	without	the	need	to	restart.		

And	if	you’ve	written	any	JavaScript	before,	you’re	probably	already	familiar	
with	the	Chrome	developer	tools.	When	running	React	Native	in	development	
mode,	you	can	attach	to	your	desktop	Chrome	browser,	so	you’ll	be	right	at	
home	with	its	debugger	and	profiling	tools.	Attaching	to	Chrome	works	either	
in	the	simulator	or	connected	to	a	physical	device.		

	

Code	sharing	React	Native	can	share	code	between	Android	and	iOS.	9.	Live	
Update		

Anyone	who	has	shipped	an	iOS	app	has	experienced	the	frustration	of	
waiting	for	App	Store	approval.	With	React	Native,	it	is	possible	to	do	live	
updates	to	your	app	without	going	through	the	App	Store	–	much	like	for	a	
web	app.	Since	the	bulk	of	your	app	will	be	JavaScript,	you	can	fetch	updates	
on	the	fly	over	the	network.	There	are	already	services	to	help	with	this		

like	AppHub	(https://apphub.io/)	.		

A Whitepaper on React
Native

Version 1.0

Revision date June 7, 2016

Revised by Rajan Twanabashu

Page 11 of 16

	

10.	A	robust	set	of	native	components		

Xcode	provides	Swift	and	Objective	C	developers	with	a	plethora	of	
components	to	build	native	apps.	Many	of	these	components	have	been	built	
into	React	Native,	and	are	immediately	at	your	disposal	when	getting	started.		

Basic	components	like	Images,	ListViews,	ScrollViews,	Sliders,	TabBars,	etc.	
are	able	to	be	added	into	your	app,	using	an	easy	to	understand	component-
driven	implementation.	The	full	list	(https://facebook.github.io/react-
native/docs/getting-started.html#content)	is	far	too	expansive	to	list	here,	
but	take	a	look	for	yourself.		

Beyond	basic	components,	various	iOS	APIs	have	been	incorporated	as	well.	
AsyncStorage,	Camera	Roll,	PushNotifications,	Vibration,	etc.	All	APIs	the	
developer	has	access	to	when	building	their	native	apps.		

	

11.	A	robust	set	of	third-party	components		

In	addition	to	the	large	amount	of	native	components	the	RN	team	provides,	
the	RN	developer	community	is	creating	additional	components	available	to	
developers.		

Sites	like	React	Components	(http://react-components.com/)	and	React	Parts	
(https://react.parts/native)	contain	dozens	of	additional	components	for	
React,	implementing	other	iOS	specific	design	patterns,	or	in	some	cases	
additional	functionality.	In	our	most	recent	React	Native	project,	we	used	
Mapbox’s	React	Native	Component	(https://github.com/mapbox/react-
native-mapbox-gl)	to	create	a	custom	stylized	map	in	our	app.		

A Whitepaper on React
Native

Version 1.0

Revision date June 7, 2016

Revised by Rajan Twanabashu

Page 12 of 16

	

12.	CSS-like	Stylesheets		

To	provide	aesthetics	for	the	app,	React	Native	utilizes	a	simplified	version	of	
CSS,	to	assist	with	styling	your	components.	Most	standard	color,	type,	and	
layout	style	properties	can	be	used	in	React	Native,	and	the	process	is	very	
familiar	to	a	HTML/CSS	workflow;	albeit	all	of	your	styles	need	to	be	inlined	
within	a	components	javascript	file.		

To	provide	positioning	of	components	within	the	screen,	React	Native	uses	a	
slightly	modified	version	of	Flexbox,	allowing	the	user	to	create	a	layout	
scaling	between	orientations	and	between	device	sizes.	Yet	another	example	
of	how	smooth	RN	makes	the	transition	from	web	to	native.		

	

13.	Native	Modules		

Sometimes	an	app	needs	access	to	platform	API,	and	React	Native	doesn’t	
have	a	corresponding	module	yet.	Maybe	you	want	to	reuse	some	existing	
Objective-C,	Swift	or	Java	code	without	having	to	implement	it	in	JavaScript	.	
In	React	Native	it	is	possible	for	you	to	write	real	native	code	and	have	access	
to	the	full	power	of	the	platform.		

	

14.	Native	UI	Components		

There	are	tons	of	native	UI	widgets	out	there	ready	to	be	used	in	the	latest	
apps	–	some	of	them	are	part	of	the	platform,	others	are	available	as	third-
party	libraries,	and	still	more	might	be	in	use	in	your	very	own	portfolio.	React	
Native	has	several	of	the	most	critical	platform	components	already	wrapped,	

A Whitepaper on React
Native

Version 1.0

Revision date June 7, 2016

Revised by Rajan Twanabashu

Page 13 of 16

like	ScrollView	and	TextInput,	but	not	all	of	them,	and	certainly	not	ones	you	
might	have	written	yourself	for	a	previous	app.	Fortunately,	it’s	quite	easy	to	
wrap	up	these	existing	components	for	seamless	integration	with	your	React	
Native	application.		

15.	Integrate	with	existing	Application		

Since	React	makes	no	assumptions	about	the	rest	of	your	technology	stack	–	
it’s	commonly	noted	as	simply	the	V	in	MVC	–	it’s	easily	embeddable	within	an	
existing	non-React	Native	app.		

	

16.	Communication	between	React	Native	and	Native		

In	Integrating	with	Existing	Apps	guide	and	Native	UI	Components	guide	we	
learn	how	to	embed	React	Native	in	a	native	component	and	vice	versa.	When	
we	mix	native	and	React	Native	components,	we’ll	eventually	find	a	need	to	
communicate	between	these	two	worlds.	Some	ways	to	achieve	that	have	
been	already	mentioned	in	other	guides.	This	article	summarizes	available	
techniques.		

	

	

	

	

	

A Whitepaper on React
Native

Version 1.0

Revision date June 7, 2016

Revised by Rajan Twanabashu

Page 14 of 16

4 Application	build	with	React	Native	
	

These	are	some	of	the	most	well	crafted	React	Native	apps	that	we	have	come	
across.		

Facebook	Group	Sound	Cloud	Discovery	VR		

More	info	can	be	found	at	showcase	(https://facebook.github.io/react-	
native/showcase.html)	or	http://www.reactnative.com		

	

A Whitepaper on React
Native

Version 1.0

Revision date June 7, 2016

Revised by Rajan Twanabashu

Page 15 of 16

5 Negative	Side	of	React	Native.	
	
One	of	the	major	negative	points	about	the	react	native	is	the	availability	
proper	of	documentation.	Facebook	have	recently	open	source	this	
framework.		Since	then	lot’s	and	lot’s	of	contributor	are	putting	there	effort	in	
react	native	which	is	actually	very	good	for	this	community.	But	with	the	
increase	of	contributor	the	available	document	are	getting	scattered	across	
the	git	hub	and	it’s	really	tough	task	to	find	those	api	from	one	place.		
	
Similarly	react	use		a	coding	pattern	called	JSX	(JavaScript	XML)		where		both	
JavaScript	and	XML	code	are	placed	in	single	place,	which	was	consider	very	
bad		programming	pattern.		This	will	make	lot’s	of	developer	especially	web	
developer	uncomfortable	in	witting	code	in	react.	
	

A Whitepaper on React
Native

Version 1.0

Revision date June 7, 2016

Revised by Rajan Twanabashu

Page 16 of 16

6 Conclusion	
	
Coming	to	final	thought	,	I	have	never	been	so	excited		in	developing	mobile	
application		using	react	native	because	of	how	ease	it	is	to	develop	multi	
platform	mobile	application		with	one	single	tool.		Till	now	react	native	
support	for	iOS	and	Android	mobile	application	development.	But	Facebook	is	
putting	lot	of	effort	to	make	it	available	for	other	platform	as	well.	Hopefully	
next	year	they	will	be	able	to	achieve	windows	support	as	well.		
	

